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Introduction

Perform Common Process Loop Control Algorithms

This white paper discusses how to use the features inherent in the 
Enhanced PIDE instruction in the RSLogix 5000 Function Block 
Diagram (FBD) editor to perform common process loop control 
algorithms such as:

adaptive gains•

cascade control•

ratio control•

multiloop selection•

split-range time-proportioning•

Although this paper focuses on the PIDE instruction, be aware that 
the FBD editor supports many other process control instructions. 
Other instructions provide capabilities such as flow totalization, 
ramp/soak temperature profiles, motor operated valve control, and 
two- or three-state device control for devices such as pumps and 
solenoid valves. These instructions provide you with the building 
blocks you need to perform typical process control applications.

The PIDE instruction uses a velocity form algorithm of the PID 
equation. Essentially, this means that the loop works on change in 
error to change the output. Traditional PID algorithms used in PLCs 
have used positional form algorithms. A positional form algorithm 
works on error directly. Although this is acceptable for simple 
applications, the velocity form algorithm is much easier to apply for 
more advanced applications such as adaptive gains or multiloop 
selection. For this reason, most Distributed Control Systems (DCS) 
have traditionally used a velocity form algorithm. Likewise, the Logix 
controller family also takes advantage of the more advanced 
properties of a velocity form algorithm.

Understand that both a positional form and a velocity form PID 
algorithm perform identically in response to a change in error. In fact, 
you can easily derive one form of the equation from the other. The 
equations for the two types of algorithms are shown below:

Positional Form PID Algorithm
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Velocity Form PID Algorithm

where:
CV = Controlled Variable
E = Error
∆t = Update time
Kp = Proportional gain
KI = Integral gain
KD = Derivative gain

The two main differences between the forms of the PID algorithm are 
that:

the proportional term works on change in error (∆E) in the velocity form •
and on error (E) in the positional form 
the accumulation of the integral term is contained in the previous output •
(CVn-1) in the velocity form and in the summation of the integral term in the 
positional form. The following sections explain why this is important.

The PIDE instruction also supports two different forms of the velocity 
form algorithm – independent and dependent gains. These are 
described below:

Independent Gains Form
In this form of the algorithm, each term of the algorithm, proportional, 
integral, and derivative, has a separate gain. Changing one gain 
affects only that term and not any of the others.

where:
CV = Control variable
E = Error in percent of span
∆t = Update time in seconds used by the loop
KP = Proportional gain
KI = Integral gain in min-1. Note that a larger value of KI causes a faster 

integral response.
KD = Derivative gain in minutes
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Dependent Gains Form
In this form of the algorithm, the Proportional gain is effectively 
changed into a Controller gain. By changing the Controller gain, you 
change the action of all three terms, proportional, integral, and 
derivative, at the same time.

where:
CV = Control variable
E = Error in percent of span
∆t = Update time in seconds used by the loop
KC = Controller gain
TI = Integral time constant in minutes per repeat. In other words, it will 

take TI minutes for the integral term to repeat the action of the 
proportional term in response to a step change in error. Note that 
a larger value of TI causes a slower integral response.

TD = Derivative time constant in minutes

When you use the PIDE instruction with the parameter 
DependIndepend cleared, the parameters PGain, IGain, and DGain 
are used to represent KP, KI, and KD. When DependIndepend is set, 
you use the parameters PGain, IGain, and DGain to represent KC, TI,
and TD.

The PIDE equations above are representative of the algorithms used 
by the PIDE instruction. You can substitute the change in error values 
by the change in PV (in percent of span) for the proportional and 
derivative terms by manipulating the parameters PVEProportional and 
PVEDerivative. By default, the PIDE instruction actually uses the 
change in error for the proportional term and the change in PV for the 
derivative term. This eliminates large derivative spikes on changes in 
setpoint.
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You can convert the gains used between the independent and 
dependent gains PIDE algorithm forms by using the following 
equations:

CP KK =•
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Either algorithm type – independent or dependent – can give you 
identical control with the appropriate gains. It really just depends on 
with which style of PID algorithm you have the most familiarity. Some 
people prefer the independent gains style since they can manipulate 
individual gains without affecting the other terms. Others prefer the 
dependent gains style since they can, at least to a certain extent, 
change only the controller gain and cause an overall change in the 
aggressiveness of the PID loop without changing each gain 
separately.

One of the big advantages of a velocity form algorithm is the 
implementation of adaptive gains. Implementing adaptive gains simply 
means that you change the proportional, integral, and derivative gain 
values in a running loop. This is often desirable since a process may 
have very different operating characteristics depending on the actual 
operating environment. For example, the barrel temperature control of 
an extrusion machine often involves heating the barrel with resistive 
heaters and cooling the barrel by running coolant through lines around 
the barrel. The heating and cooling of the barrel are two different 
physical processes and often require different gain values in order to 
obtain the best control. Typically this is accomplished by defining 50% 
loop output as providing no heating or cooling. An output greater than 
50% applies increasing heating, and an output less than 50 % applies 
increasing cooling.

With a positional form algorithm, swapping in new gains as the loop 
changes from heating to cooling is very difficult. Since the proportional 
term on a positional form algorithm works directly on error, any error 
at the point at which the gains change causes a bump in output 
proportional to the difference between the heating and cooling 
proportional gains. For example, assume that the heating proportional 
gain is 3 and the cooling proportional gain is 1. Now, if the loop output 
moves from cooling to heating (i.e., crosses 50%), and, when it does 

Adaptive Gains
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so, the error is at 5%, the loop experiences a 10% bump in output 
when you switch it to the heating gains. This is because the positional 
form PID algorithm works on error directly. It is very difficult to get 
good control when the output is bumped just because of new gains. 
To handle this correctly, you really need to put the loop in manual, put 
in the new gains, execute the loop in manual once to allow it to back-
calculate for a bumpless transfer, and then finally put the loop back 
into automatic to start using the new gains. This is difficult and time-
consuming to program correctly.

Now do the same thing with a velocity form algorithm. Changing the 
proportional gain from 1 to 3 with a 5% error causes no change in the 
output since the error was 5% just before the new gain was used and 
remained 5% just after the new gain was used. Since the error didn’t 
change, no proportional term change is made to the output. You now 
see why implementing adaptive gains control schemes is much easier 
with the velocity form PIDE algorithm used in Logix. You can simply 
swap in new gain values on-the-fly without worrying about bumping 
your process.

Heat

Cool

Assume 
Kp=3

Assume 
Kp=1
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Velocity algorithm •
has no bump in 
output.

Assume that when we •
switch from cool to 
heat the error is 5%.

Positional algorithm •
has an immediate 
10% bump in output.

There are times when two or more process variables are controlled by 
the same control variable. Often, the actual control variable sent to the 
field actuator needs to be limited in these cases to use either the 
lesser or greater of the outputs of two or more PID loops (one for 
each different process variable). For example, to control both the 
temperature and pressure in an exothermic chemical reaction, you 

Multiloop Selection
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might have a PID loop for temperature, another PID loop for pressure, 
and use the lesser of the outputs of these two loops to control a flow 
of catalyst into the reactor to modulate the reaction rate. In other 
words, if the pressure is too high, the pressure PID loop calls for less 
catalyst, and if instead the temperature is too high, the temperature 
loop calls for less catalyst. In either case, you always want to use the 
lesser of the two loops to control the catalyst flow. The challenge is to 
align the loop which is not in control with the loop that is, and to allow 
control to bumplessly switch between the loops.

Catalyst TT PT

A positional form PID algorithm is very difficult to implement correctly 
for this type of control scheme. Since you constantly need to align the 
loops, you must take the output of the loop which is in control, provide 
it as a manual output signal to the other loop, put that loop in manual 
to back calculate and align with the loop which is in control, and then 
put the out-of-control loop back into auto. You must do this for every 
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execution of the loops.

A velocity form PID algorithm provides a clear advantage for these 
types of control schemes. Since the previous output of the loop is 
available in the CVn-1 term, it is a simple matter of wiring the output 
actually sent to the final control element into the CVn-1 term of each 
loop. The two loops will therefore always be aligned with each other 
and control can bumplessly move between temperature or pressure 
limited control. An example of this logic is shown below:

As shown, the value actually sent to the catalyst valve is simply wired 
back into the CVPrevious parameter on each PIDE instruction. You 
should also set the CVSetPrevious parameter to tell the PIDE 
instruction to use the CVPrevious parameter as the CVn-1 term in the 
PID algorithm. This logic is much simpler to create and maintain than 
the equivalent logic required for a positional form PID algorithm.



Perform Common Process Loop Control Algorithms

The PIDE instruction provides additional capabilities through the use 
of many different modes of control. In addition to the traditional modes 
such as auto and manual, the PIDE instruction also supports the 
concept of Program/Operator control to define who is allowed to make 
changes to the loop. If the loop is in Program control, the user 
program can place the loop into the appropriate mode (e.g., 
Auto/Manual), and change the setpoint or manual output of the loop. 
Conversely, if the loop is in Operator control, the operator can change 
modes and values. The supported control types and loop modes are:

Mode Usage
Program Control When in Program control, the loop mode is determined by the user program. 

The user program can also change the setpoint and manual output of the loop.
Operator Control When in Operator control, the loop mode is determined by the operator. The 

operator can also change the setpoint and manual output of the loop.
Cascade/Ratio Mode When in Cascade/Ratio mode, the loop will automatically regulate its output as 

in Auto mode, but the setpoint will come from an external source, as connected 
to the SPCascade input parameter. If the UseRatio parameter is set, the 
SPCascade input will also be multiplied by a ratio value before it is used as the 
setpoint.

Auto Mode When in Auto mode, the loop will automatically regulate its output to maintain 
the PV at the setpoint.

Manual Mode When in Manual mode, the loop will set its output equal to the CV value entered 
by the user program (when in Program control) or by the operator (when in 
Operator control)

Override Mode When in Override mode, the loop will set its output equal to the CV value 
configured in the CVOverride parameter. Override mode is typically used for 
interlock conditions.

Hand Mode When in Hand mode, the CV value is set equal to the HandFB parameter. The 
HandFB is intended to come from a hard hand/auto station. When the loop is 
placed into Hand mode (by setting the ProgHandReq parameter), it indicates 
that the hand/auto station has bypassed the control system and is controlling the 
final control element directly. By setting the CV equal to the HandFB value (the 
output of the hand/auto station), the loop can bumplessly return to Auto or 
Manual mode once out of Hand mode.

Mode Control Options
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Mode changes are initiated by setting the appropriate mode request 
parameters of the PIDE instruction. These mode request parameters 
are prefixed by either “Prog” to indicate it is a programmatic request or 
by “Oper” to indicate it is an operator generated request. For example, 
OperAutoReq is a request from the operator to enter Auto mode. 

The Program/Operator control states can be used to lock the PIDE 
instruction into the appropriate control state when needed. For 
example, an automated startup sequence might be used in an 
application where the user program needs to lock the PIDE instruction 
into Program control to ensure that the operator does not interfere 
with the startup. This can be done by setting the ProgProgReq 
parameter (programmatic request to go to the Program control state). 

When “ProgramLock” is •
true, the loop is locked 
into Program control 
since ProgProgReq is 
true.

ProgOper indicates 
the current control 
state of the loop.

Loop is locked into •
Operator control 
since ProgOperReq is 
true.
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The control states and modes also have precedences. If both 
Program and Operator control are requested, the loop will go to 
Operator control. The precedence for modes are (lowest to highest): 
Cascade/Ratio, Auto, Manual, Override, and Hand.

Finally, the Operator requests are designed to simplify working with 
operator interfaces. Any time an “Oper…” request is set, the PIDE 
instruction evaluates whether it can respond to the request, and then 
always resets the request. This eliminates the need for special 
programming in the HMI to reset mode requests.

Regulatory control instructions require a known update time (the ∆t in 
the PIDE equation, for example) in order to execute correctly. In 
Logix, instructions such as Enhanced PID, Totalizer, and Lead-Lag 
support three different timing modes to obtain this update time: 
Periodic, Oversample, and Real Time Sampling. These modes are 
described below:

Mode Description
Periodic The default timing mode. To use this mode, simply place the instruction in a routine running in a 

periodic task. The instruction will automatically use the periodic task update rate as the update 
time. This mode is the easiest to implement and can be used for most applications.

Oversample This timing mode provides complete manual control over how the instruction executes. To use 
this mode, configure the update rate in OversampleDT. You must then set EnableIn every 
OversampleDT seconds.

Real Time 
Sampling

This timing mode works with analog input modules to execute the instruction algorithm whenever 
a new analog input sample is received. To use this mode, wire the RollingTimeStamp parameter 
from the analog input module into the RTSTimeStamp parameter on the instruction, and wire the 
RealTimeSample parameter from the analog input module into the RTSTime parameter on the 
instruction. This mode is useful if you want the most accurate execution on instructions such as 
Totalizer where small errors could accumulate over time.

Timing Modes
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An example of using Periodic mode is shown in the figure below. 
Periodic mode can be used for the vast majority of your loops. Just 
make sure that the PV is sampled faster than the periodic task update 
rate.

For an example of where you might use Oversampling mode, 
consider an eddy current furnace where every 28 seconds, a new 
steel ingot is dropped on a conveyor and pushed forward into the 
furnace. An infrared camera takes a temperature reading on the ingot 
which is pushed out the end of the furnace. The infrared camera 
provides the PV (temperature) for this loop through a serial interface 
to the controller. In this case, a new PV is obtained about every 28 
seconds, but due to the asynchronous nature of the serial port 
communications, there is no good way to synchronize this with a 
periodic task. You could use Oversampling mode to drive execution of 
the PIDE instruction every time a new temperature signal was 
received as shown below. 

Since the timing mode is Periodic 
(TimingMode=0), DeltaT is automatically 
set to the task update time of 0.1 seconds.

Periodic mode is intended to be 
used by placing the block into a 
periodic task.
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For an example of using Real Time Sampling mode, consider the 
case of a flow totalizer. In this case, a volumetric flow signal is totaled 
over time using a Totalizer instruction. Because the Totalizer 
continually adds the most recent flow sample to the running total, any 
small inaccuracies can build up over time. To obtain the most 
accurate time based samples from the analog input module, you could 
use Real Time Sampling mode as shown below. (Note that the 
Totalizer instruction internally uses double precision floating point and 
trapezoidal rule numerical integration to minimize any calculation 
errors.)

Select Oversampling mode 
(TimingMode=1). 

Turn on visibility for 
OversampleDT pin and wire 
to setting for the “new ingot 
rate.”  (Optionally, you could 
just enter a constant value.) 

Turn on visibility for EnableIn pin 
and wire to the boolean signal 
indicating “new temperature 
received” from IR camera. 
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Configure the analog 
input module for your 
desired RTS rate.

Turn on visibility of RTSTime 
and RTSTimeStamp.

Wire the RealTimeSample value from 
the analog input module configuration 
to the RTSTime parameter.

Wire the RollingTimeStamp input from the 
analog input module to the RTSTimeStamp 
parameter. The totalization algorithm will 
now execute every time it sees the time 
stamp change.

When a process variable or control variable has bad health, you don’t 
want the PID loop continuing to try to control since it no longer has 
either a feedback or an actual control capability. The PIDE instruction 
can handle this automatically if you use 1756 I/O modules. The 1756 
I/O modules all have channel fault indications for each channel. The 
channel fault will turn on if communications are lost with the I/O 
module or if faults such as underrange or overrange occur on the 
channel. The channel fault, therefore, is an easy single parameter to 
monitor the quality of the I/O channel. By wiring these channel fault 
indicators into the PVFault and CVFault parameters, the PIDE 
instruction will automatically lock itself into Manual mode any time the 
PV or CV has bad health.

PV and CV Fault 
Handling
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To automatically handle PV or CV faults, first turn on 
visibility of the PVFault and CVFault pins.

Then just wire the analog 
input and analog output 
channel fault bits to the 
PVFault and CVFault pins.

Channel fault indicators go true 
if the channel fails (goes 
underrange or overrange, etc.) 
or if communications with the 
module fails.

When PVFault or 
CVFault is true, the 
loop locks into Manual 
mode. This prevents 
the CV from winding 
up out of control.

Ratio control is useful when you are trying to maintain a constant ratio 
of flow of one material in relationship to another. For example, 
assume that a continuous mixing tank receives an ingredient flow 
(Flow A) from an upstream source. The quantity of Flow A may vary 
depending on upstream processing conditions. For this reason, Flow 
A is often referred to as the “wild” or “uncontrolled” flow. Regardless of 
the amount of Flow A into the mixer, you always want to add a 
constant percentage, or ratio, of another ingredient (Flow B). Flow B is 
controlled by a PIDE instruction using Cascade/Ratio mode, where 
the setpoint to the PIDE instruction is determined by multiplying the 
Flow A signal by a ratio value.

Ratio Control



Perform Common Process Loop Control Algorithms

To enable Cascade/Ratio mode, you must first set parameter 
AllowCasRat. This parameter is available since most loops do not 
need Cascade/Ratio mode, so it is disabled by default. You must also 
set the UseRatio parameter. This tells the PIDE instruction to multiply 
the SPCascade input by the Ratio value and use the result as the 
setpoint when in Cascade/Ratio mode. You then wire the controlled 
flow into the PV input and the uncontrolled flow into the SPCascade 
input. You can also define ratio high and low limit values to limit the 
ratio to valid values. An example of this implementation is shown 
below. 

Flow B

FT FT

Flow A
Controlled flow 
controlled by PIDE 
instruction

Uncontrolled 
flow from 
upstream 
process
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Wire the uncontrolled flow into the 
SPCascade parameter.

Use the controlled flow as the PV.

Set UseRatio to tell the loop 
to multiply SPCascade by 
the Ratio value.

Ratio values can 
come from an 
operator display 
or the program.

Ratio limits can be 
used to bound the 
acceptable ratio 
values.

Set AllowCasRat to 
allow Cascade/Ratio 
mode.

Cascade control is useful when you want to limit fluctuations in your 
final control element from causing upsets to your process. As an 
example, consider the case of a mixing tank whose temperature is 
controlled by the flow of steam into a heating jacket around the tank. If 
the steam pressure were to drop as the result of some upstream 
activity, the temperature of the product in the tank would start to 
decrease. The PID loop controlling the temperature would sense the 
temperature drop and eventually open the steam valve enough to 
bring the temperature back to setpoint. However, it would be 
advantageous to start opening up the steam valve before the product 
temperature was seriously affected. Cascade control provides this 
capability.

In cascade control, the loop controlling the main variable is referred to 
as the primary loop. This is also sometimes referred to as the master 
loop or outer loop. In our example, the tank temperature is controlled 
by the primary loop. The loop controlling fluctuations in the final 
control element is referred to as the secondary loop. The terms ‘slave 
loop’ or ‘inner loop’ are also used. In our example, you could set up a 
secondary loop to monitor the jacket temperature. Since the volume of 
the jacket is much smaller than the volume of the tank, it will respond 
much more quickly to changes in steam pressure. This illustrates one 
of the limitations of cascade control. The process response 

Cascade Control
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characteristics of the secondary loop must be quicker than the 
process response characteristics of the primary loop. This is logical 
since if the secondary loop was slower, it would not be able to control 
disturbances before they were seen by the primary.

With a secondary loop monitoring the jacket temperature, a drop in 
steam pressure will now be quickly seen as a drop in the jacket 
temperature, and the secondary loop will start opening the steam 
valve before the tank temperature is seriously affected. This is 
illustrated in the diagram below.

With cascade control, a drop in steam pressure •
causes the jacket temp to drop. The secondary 
(inner) PID loop then responds to increased steam 
flow and gets the jacket temp back to setpoint 
before the product temp is seriously affected.

Time

P
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Steam

TT TT

PID

PID
PV

SP

PV

Primary loop

Secondary loop

The PIDE instruction has built-in capabilities to handle cascaded 
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loops. First, it has a distinct mode (Cascade/Ratio) to handle cascade 
control. The secondary loop can either be in Cascade mode, in which 
case the output of the primary will provide the setpoint of the 
secondary, or it can be in Auto mode, in which case you can enter a 
temperature setpoint for the jacket directly.

The PIDE instruction also supports initialization of the primary loop to 
the secondary loop’s setpoint. If the secondary loop leaves Cascade 
mode, the primary loop needs to stop trying to control since it no 
longer is affecting the process. It should also set its output equal to 
the secondary loop’s setpoint, so when the secondary is returned to 
Cascade mode, the primary will bumplessly start controlling.
Additionally, the PIDE instruction supports windup limiting on the 
primary loop. When the secondary loop reaches an output or setpoint 
limit, you want the primary loop to stop integrating in the direction of 
the limit. For example, if the secondary reached a high output limit, 
the primary should no longer integrate in a positive direction. In our 
example, if the secondary loop had opened the steam valve 100%, it 
would make no sense for the primary to continue to ask for more 
steam (increase the secondary’s setpoint) since the secondary cannot 
give any more steam.

A typical setup of a cascaded loop in RSLogix 5000 is illustrated 
below. First on the primary loop, you need to turn on visibility of the 
CVInitReq and CVInitValue pins. These will be used to setup the 
initialization of the primary loop when the secondary leaves Cascade 
mode. You should also make sure that the engineering units range of 
the primary’s output matches the engineering units range of the 
secondary’s setpoint since the secondary will use the primary’s output 
as its setpoint.
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Turn on visibility of CVInitReq 
and CVInitValue pins.

Make sure CVEUMax and CVEUMin 
match the engineering unit range of the 
secondary loop’s SP.

On the secondary loop, you need to turn on visibility of the InitPrimary, 
WindupHOut, and WindupLOut pins. These will be used to setup 
initialization and windup limiting on the primary. You also need to set 
AllowCasRat to enable the Cascade/Ratio mode just as we did for a 
ratio control loop.
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Set AllowCasRat true to enable 
Cascade/Ratio mode.

Turn on visibility of 
InitPrimary, WindupHOut, and 
WindupLOut pins.

Finally, you should wire the InitPrimary and SP outputs of the 
secondary to the CVInitReq and CVInitValue inputs on the primary. 
When the secondary leaves Cascade mode, it will set the InitPrimary 
output, causing the primary loop to initialize its CVEU output to be 
equal to the secondary’s setpoint. You should also wire the 
WindupHOut and WindupLOut outputs of the secondary to the 
WindupHIn and WindupLIn inputs on the primary. When the 
secondary hits an output or setpoint limit, it will set the appropriate 
Windup output which will cause the primary loop to stop integrating in 
that direction.
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Wire InitPrimary to 
CVInitReq to 
initialize the primary 
whenever the 
secondary leaves 
CasRat mode.

Wire SP to CVInitValue to initialize the primary’s CVEU to the 
secondary’s SP value whenever CVInitReq is true. This allows 
the primary to bumplessly line up with the secondary.

Wire WindupHOut and WindupLOut to 
WindupHIn and WindupLIn. This stops the 
primary from integrating up or down if the 
secondary hits an output or setpoint limit.

One final note -- some DCS systems accomplish the primary 
initialization and windup limiting by wiring a single “back-calculate” 
wire from the secondary to the primary. This wire contains all of the 
initialization and windup H/L signals. However, the advantage of 
breaking these out as separate signals is that it allows additional 
flexibility for handling more advanced situations where, for example, a 
single primary loop might fan out to multiple secondaries.

In certain situations, a single PIDE instruction might be used to 
perform two types of control depending on the output range. If we 
return to the example of an extrusion machine barrel zone, the 
temperature is controlled by pulsing resistive heaters when the PIDE 
output is above 50% and pulsing coolant through cooling coils when 
the PIDE output is below 50%. The Logix controllers support a Split-
Range Time-Proportioning (SRTP) instruction for precisely these 
types of loops.

You also need to consider how you execute the PIDE and SRTP 
instructions. These types of temperature loops are usually very slow 
acting, so the PIDE instruction often needs to execute only every one-
half to two seconds. It is important, however, that the SRTP 
instruction is executed much more quickly than the PIDE instruction. 
Since the SRTP is actually performing the pulsing of the heating and 

Split-Range Time-
Proportioned Loops



Perform Common Process Loop Control Algorithms

cooling outputs, your output resolution is a function of the CycleTime 
of the SRTP and how often the SRTP executes. 

For example, if you defined a CycleTime for the SRTP of 10 seconds, 
and then executed the SRTP in the same periodic task as the PIDE at 
once a second, your output resolution would actually only be 10%! It 
would be impossible to control your loops with this resolution. 
Therefore, what you want to do is execute the SRTP instruction in a 
faster, higher priority periodic task typically running every 10 or 20 
milliseconds. You can then use a controller scoped tag to send the 
data from the PIDE output to the input of the SRTP.

For a typical loop then, your CycleTime might be 10 seconds, and if 
your SRTP instruction is running in a 20 millisecond periodic task, 
then your output resolution is 0.2% which is plenty of resolution to 
handle most of these types of loops. For heat/cool loops, you typically 
configure the SRTP instruction such that 100% PIDE output provides 
full heating, 50% PIDE output provides no heating or cooling, and 0% 
PIDE output provides full cooling. In fact, this is the default SRTP 
configuration. For a heat-only loop, configure the SRTP such that 
100% PIDE output provides full heating, and 0% PIDE output provides 
no heating. Additionally, for a heat/cool loop, you will typically want to 
set the .CVInitValue parameter of the PIDE instruction to 50. This will 
cause the PIDE loop to start up with an output of 50% when the 
controller first goes to run mode. A typical heat/cool loop setup of the 
SRTP instruction is shown below.

Cycle Time = 10 seconds

PIDE 
CVEU

SRTP % 
Heating

SRTP % 
Cooling

SRTP 
Heat 

Contact 
On Time

SRTP 
Cool 

Contact 
On Time

0% 0% 100% 0 sec 10 sec
25% 0% 50% 0 sec 5 sec 
50% 0% 0% 0 sec 0 sec 
75% 50% 0% 5 sec 0 sec 

100% 100% 0% 10 sec 0 sec 
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The FBD logic to execute a typical heat/cool loop would then look like 
this:

Execute the PIDE instructions 
in a slow periodic task since 
these are typically slow 
temperature loops.

Execute the SRTP 
instructions in a faster, 
higher priority task. This 
allows the pulsed outputs to 
be more accurate.

Use a controller 
scoped tag to send 
the PIDE CVEU to 
the input of the SRTP

If you are driving an analog final control element for heating and/or 
cooling instead of a digital contact, you can directly use the 
HeatTimePercent and CoolTimePercent outputs of the SRTP 
instruction. They will range from 0-100% depending on the amount of 
heating or cooling requested by the PIDE instruction.

As mentioned earlier in this document, adaptive gains can easily be 
accomplished with the PIDE instruction. Often, having different gains 
for the heating and cooling processes can lead to better control since 
these are different physical processes. To accomplish adaptive gains, 
turn on visibility of the PGain, IGain, and DGain parameters and wire 
in a selection of either a set of heating gains or cooling gains as 
shown below.
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Turn on visibility of PGain, IGain, 
and DGain pins. This allows the 
tuning constants to be 
programmatically changed.

Test if CVEU is greater than 50%. If 
so, select the heating gain; if not, 
select the cooling gain.

Repeat this selection 
logic for each gain.

For simple simulation of process loops, you can use the process 
instructions built right into the Logix controller. Most loops can 
generally be thought of as either “integrating” or “self-limiting.” An 
example of an integrating process would be a level loop. If you 
consider a tank with a flow into the tank matched exactly by the flow 
out of the tank, it will have a steady level. If you then make a step 
increase in the flow into the tank, the tank will steadily fill up until it is 
full or overflows. This is typical of an integrating process loop; if you 
make a step change to the loop output, the process will steadily 
increase or decrease until it reaches a physical limit.

Process Simulation
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Time
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Tank 
overflows!

An integrating loop such as a level loop is simple to simulate – just 
perform a mass or material balance calculation on the tank.

An example of a self-limiting process loop would be a temperature 
loop. If you make a step increase to the loop output, the temperature 
might typically take a little while to start responding, and would then 
exponentially increase to a new steady-state value.

Time
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m
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tu
re

CV (steam flow)

PV

A self-limiting process loop can often be simulated by a deadtime and 
first order lag in series. The deadtime simulates the delay between 
when the output changes and the PV starts responding, and the lag 
simulates the exponential rise to a new steady-state value.
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Simulated Process

The Logix controller provides Deadtime and Lead-Lag instructions 
which can be used for these types of simulations. The output of the 
PIDE instruction is wired through the Deadtime and Lead-Lag and 
then back into the PV input of the PIDE. The loop can then be tuned 
and operated with the model.

Wiring the CVEU of the PIDE 
block through a Deadtime 
and Lead-Lag block 
simulates a process.First-order lag 

defines curve
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Deadtime

Simulated Process
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By choosing different values of deadtime and lag, you can simulate 
different types of process loops. For example, a slow temperature 
loop might have a deadtime of a few minutes and a lag time constant 
of several minutes, while a fast flow loop might have a deadtime of a 
couple seconds and a lag time constant of a few seconds.

You can also use the Gain parameter on the Deadtime or Lead-Lag 
instruction to simulate a process gain.  For example, if a 10% change 
in loop output would typically cause a 20% change in PV, you could 
use a Gain of 2 to simulate this behavior.  Similarly, if your loop has 
an ambient condition whereby a loop output of 0% would cause the 
process to settle at some non-zero value, you can enter this value as 
a Bias.  For example, a temperature loop might settle at room 
temperature if the loop output was 0%.  Finally, you might sometimes 
also want to use a Scale (SCL) block to scale the output of the PIDE 
instruction into a PV value with a different range.

The PIDE instruction has a built-in autotuner which you can use to 
obtain suggested tuning constants for your process loop. Because the 
autotuner is built into the PIDE instruction, you can tune your loops 
within RSLogix 5000 or from any operator interface. The PIDE 
autotuner is an open loop autotuner, meaning that the loop must be in 
manual. The autotuner will step the output by an amount you 
configure, watch the response of the PV, and then give you sets of 
suggested proportional, integral, and derivative gain values for a fast, 
medium, or slow response. As shown below, in addition to the 
suggested tuning constants, the autotuner also returns the process 
model which was used to estimate the tuning constants. By 
comparing this process model to the actual process, you can get an 
idea of the appropriateness of the suggested gains.

Autotuning

Tuning constants suggested by 
the autotuner
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Process model used by 
the autotuner

If more autotuning capability is desired, the PIDE instruction also 
supports the RSTune and RSLoopOptimizer packages. These PC-
based autotuners support closed loop tuning and also, particularly in 
the case of RSLoopOptimizer, provide a wealth of diagnostic 
information regarding your process loops.

For more reference information on the Enhanced PID instruction and 
the rest of the process control instruction set, you can refer to the 
Logix5000 Controllers Process Control and Drives Instructions 
Reference Manual, publication 1756-RM006. This manual gives a 
detailed description of the operation of each of the built-in process 
instructions.

Summary
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The Enhanced PID instruction goes beyond the traditional realm of 
PLC-based loop control by providing a host of advanced features, 
allowing you to easily set up more advanced loop algorithms without 
the onerous ladder programming required by traditional systems in the 
past. However, the PIDE instruction is only one piece of a Logix-
based process solution. Other features such as the entire process 
control instruction set, full-featured Function Block Diagramming, 
Sequential Function Chart, and Structured Text editors, ControlLogix 
redundancy, a huge selection of I/O options, including HART and 
FOUNDATION Fieldbus, and integration with our RSView operator 
interface solutions, allow the Logix controllers to provide a solution as 
adept at performing process control as they are at sequential, motion, 
or drives control. This provides the opportunity to drastically decrease 
your engineering and maintenance costs by leveraging a common, 
scaleable platform across your entire facility. Whether you are 
controlling continuous or batch process applications, high-speed 
packaging machines, or coordinated drive systems, Logix now has the 
capabilities to handle all these applications.
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