Allen-Bradley

Allen-Bradley

Perform Common Process Loop
Control Algorithms

Using the PIDE Instruction

@ Aen-Bradiey

MELIANCE
Frecraich Do }35

" Rockwvell
Automation

Bringing Together Leading Brands in Industrial Automation

Perform Common Process Loop Control Algorithms

Introduction

Velocity vs.
Positional Control

This white paper discusses how to use the features inherent in the
Enhanced PIDE instruction in the RSLogix 5000 Function Block
Diagram (FBD) editor to perform common process loop control
algorithms such as:

- adaptive gains

- cascade control

« ratio control

« multiloop selection

« split-range time-proportioning

Although this paper focuses on the PIDE instruction, be aware that
the FBD editor supports many other process control instructions.
Other instructions provide capabilities such as flow totalization,
ramp/soak temperature profiles, motor operated valve control, and
two- or three-state device control for devices such as pumps and
solenoid valves. These instructions provide you with the building
blocks you need to perform typical process control applications.

The PIDE instruction uses a velocity form algorithm of the PID
equation. Essentially, this means that the loop works on change in
error to change the output. Traditional PID algorithms used in PLCs
have used positional form algorithms. A positional form algorithm
works on error directly. Although this is acceptable for simple
applications, the velocity form algorithm is much easier to apply for
more advanced applications such as adaptive gains or multiloop
selection. For this reason, most Distributed Control Systems (DCS)
have traditionally used a velocity form algorithm. Likewise, the Logix
controller family also takes advantage of the more advanced
properties of a velocity form algorithm.

Understand that both a positional form and a velocity form PID
algorithm perform identically in response to a change in error. In fact,
you can easily derive one form of the equation from the other. The
equations for the two types of algorithms are shown below:

Positional Form PID Algorithm

CcVv :KPE+ZK,EAt+KD%

Perform Common Process Loop Control Algorithms

Velocity Form PID Algorithm

En — 2En—l + En—2
At

CV, =CV, , +K,AE + K EAt +K

where:

CV = Controlled Variable
E = Error

At = Update time

K, = Proportional gain

Ki = Integral gain

Ko = Derivative gain

The two main differences between the forms of the PID algorithm are

that:

- the proportional term works on change in error (AE) in the velocity form
and on error (E) in the positional form

« the accumulation of the integral term is contained in the previous output
(CVaa) in the velocity form and in the summation of the integral term in the
positional form. The following sections explain why this is important.

The PIDE instruction also supports two different forms of the velocity
form algorithm — independent and dependent gains. These are
described below:

Independent Gains Form

In this form of the algorithm, each term of the algorithm, proportional,
integral, and derivative, has a separate gain. Changing one gain
affects only that term and not any of the others.

- +
CV, =CV,, + K, AE + K Eat+ 60K, B 2B * By
60 At

where:

CV = Control variable

E = Error in percent of span

At = Update time in seconds used by the loop

Ke = Proportional gain

K= Integral gain in min. Note that a larger value of K, causes a faster
integral response.

Ko = Derivative gain in minutes

Perform Common Process Loop Control Algorithms

Dependent Gains Form

In this form of the algorithm, the Proportional gain is effectively
changed into a Controller gain. By changing the Controller gain, you
change the action of all three terms, proportional, integral, and
derivative, at the same time.

- +
CV,=CV, , + KC[AE +6L EAt + 60T, B, 2B, E“‘Zj

oT, At

where:

CV = Control variable

E = Error in percent of span

At = Update time in seconds used by the loop

Kc = Controller gain

T, = Integral time constant in minutes per repeat. In other words, it will
take T, minutes for the integral term to repeat the action of the
proportional term in response to a step change in error. Note that
a larger value of T, causes a slower integral response.

To = Derivative time constant in minutes

When you use the PIDE instruction with the parameter
Dependindepend cleared, the parameters PGain, IGain, and DGain
are used to represent Ke, K, and Kp. When Dependindepend is set,
you use the parameters PGain, IGain, and DGain to represent Kc, T,
and To.

The PIDE equations above are representative of the algorithms used
by the PIDE instruction. You can substitute the change in error values
by the change in PV (in percent of span) for the proportional and
derivative terms by manipulating the parameters PVEProportional and
PVEDerivative. By default, the PIDE instruction actually uses the
change in error for the proportional term and the change in PV for the
derivative term. This eliminates large derivative spikes on changes in
setpoint.

Perform Common Process Loop Control Algorithms

You can convert the gains used between the independent and
dependent gains PIDE algorithm forms by using the following

equations:

. Ko =K.
K, :&

. TI
KD = KCTD

Either algorithm type — independent or dependent — can give you
identical control with the appropriate gains. It really just depends on
with which style of PID algorithm you have the most familiarity. Some
people prefer the independent gains style since they can manipulate
individual gains without affecting the other terms. Others prefer the
dependent gains style since they can, at least to a certain extent,
change only the controller gain and cause an overall change in the
aggressiveness of the PID loop without changing each gain
separately.

Adaptive Gains One of the big advantages of a velocity form algorithm is the
implementation of adaptive gains. Implementing adaptive gains simply
means that you change the proportional, integral, and derivative gain
values in a running loop. This is often desirable since a process may
have very different operating characteristics depending on the actual
operating environment. For example, the barrel temperature control of
an extrusion machine often involves heating the barrel with resistive
heaters and cooling the barrel by running coolant through lines around
the barrel. The heating and cooling of the barrel are two different
physical processes and often require different gain values in order to
obtain the best control. Typically this is accomplished by defining 50%
loop output as providing no heating or cooling. An output greater than
50% applies increasing heating, and an output less than 50 % applies
increasing cooling.

With a positional form algorithm, swapping in new gains as the loop
changes from heating to cooling is very difficult. Since the proportional
term on a positional form algorithm works directly on error, any error
at the point at which the gains change causes a bump in output
proportional to the difference between the heating and cooling
proportional gains. For example, assume that the heating proportional
gain is 3 and the cooling proportional gain is 1. Now, if the loop output
moves from cooling to heating (i.e., crosses 50%), and, when it does

Perform Common Process Loop Control Algorithms

so, the error is at 5%, the loop experiences a 10% bump in output
when you switch it to the heating gains. This is because the positional
form PID algorithm works on error directly. It is very difficult to get
good control when the output is bumped just because of new gains.
To handle this correctly, you really need to put the loop in manual, put
in the new gains, execute the loop in manual once to allow it to back-
calculate for a bumpless transfer, and then finally put the loop back
into automatic to start using the new gains. This is difficult and time-
consuming to program correctly.

Now do the same thing with a velocity form algorithm. Changing the
proportional gain from 1 to 3 with a 5% error causes no change in the
output since the error was 5% just before the new gain was used and
remained 5% just after the new gain was used. Since the error didn't
change, no proportional term change is made to the output. You now
see why implementing adaptive gains control schemes is much easier
with the velocity form PIDE algorithm used in Logix. You can simply
swap in new gain values on-the-fly without worrying about bumping
your process.

Heat Assume

|

/S S S S ® Assume that when we

switch from cool to

heat the error is 5%.
Cool Assume

"=l — —® Positional algorithm
CV =K ERIREAL+K, — has an immediate

10% bump in output.

® Velocity algorithm

—

E_2E_+E_, hasnobumpin
At output.

CV, =CV_, + K, AEFK EAt +K

Multiloop Selection There are times when two or more process variables are controlled by
the same control variable. Often, the actual control variable sent to the
field actuator needs to be limited in these cases to use either the
lesser or greater of the outputs of two or more PID loops (one for
each different process variable). For example, to control both the
temperature and pressure in an exothermic chemical reaction, you

Perform Common Process Loop Control Algorithms

might have a PID loop for temperature, another PID loop for pressure,
and use the lesser of the outputs of these two loops to control a flow
of catalyst into the reactor to modulate the reaction rate. In other
words, if the pressure is too high, the pressure PID loop calls for less
catalyst, and if instead the temperature is too high, the temperature
loop calls for less catalyst. In either case, you always want to use the
lesser of the two loops to control the catalyst flow. The challenge is to
align the loop which is not in control with the loop that is, and to allow
control to bumplessly switch between the loops.

Catalyst @

O

~_—

A positional form PID algorithm is very difficult to implement correctly
for this type of control scheme. Since you constantly need to align the
loops, you must take the output of the loop which is in control, provide
it as a manual output signal to the other loop, put that loop in manual
to back calculate and align with the loop which is in control, and then
put the out-of-control loop back into auto. You must do this for every

Perform Common Process Loop Control Algorithms

execution of the loops.

A velocity form PID algorithm provides a clear advantage for these
types of control schemes. Since the previous output of the loop is
available in the CV,.1 term, it is a simple matter of wiring the output
actually sent to the final control element into the CV,.1 term of each
loop. The two loops will therefore always be aligned with each other
and control can bumplessly move between temperature or pressure
limited control. An example of this logic is shown below:

Te mperatura
FIC E
Lo Select
Enhanced FID
oo 0.0 ESEL 01
T O - CVED F——
ESEL
—| CW Prewious
AutatuneTag Tempatune Enhanced Select
on
] In1 Cut [] Catalystyalve
Fressure
 InZ
FID E
Enhanced PID
0.0 0.
- P CWEU [—-
LW Prewi ous
AutotuneTag Fresaftune

As shown, the value actually sent to the catalyst valve is simply wired
back into the CVPrevious parameter on each PIDE instruction. You
should also set the CVSetPrevious parameter to tell the PIDE
instruction to use the CVPrevious parameter as the CV,.1 term in the
PID algorithm. This logic is much simpler to create and maintain than
the equivalent logic required for a positional form PID algorithm.

Perform Common Process Loop Control Algorithms

Mode Control Options

The PIDE instruction provides additional capabilities through the use
of many different modes of control. In addition to the traditional modes
such as auto and manual, the PIDE instruction also supports the
concept of Program/Operator control to define who is allowed to make
changes to the loop. If the loop is in Program control, the user
program can place the loop into the appropriate mode (e.g.,
Auto/Manual), and change the setpoint or manual output of the loop.
Conversely, if the loop is in Operator control, the operator can change
modes and values. The supported control types and loop modes are:

Mode

Usage

Program Control

When in Program control, the loop mode is determined by the user program.
The user program can also change the setpoint and manual output of the loop.

Operator Control

When in Operator control, the loop mode is determined by the operator. The
operator can also change the setpoint and manual output of the loop.

Cascade/Ratio Mode

When in Cascade/Ratio mode, the loop will automatically regulate its output as
in Auto mode, but the setpoint will come from an external source, as connected
to the SPCascade input parameter. If the UseRatio parameter is set, the
SPCascade input will also be multiplied by a ratio value before it is used as the
setpoint.

Auto Mode

When in Auto mode, the loop will automatically regulate its output to maintain
the PV at the setpoint.

Manual Mode

When in Manual mode, the loop will set its output equal to the CV value entered
by the user program (when in Program control) or by the operator (when in
Operator control)

Override Mode

When in Override mode, the loop will set its output equal to the CV value
configured in the CVOverride parameter. Override mode is typically used for
interlock conditions.

Hand Mode

When in Hand mode, the CV value is set equal to the HandFB parameter. The
HandFB is intended to come from a hard hand/auto station. When the loop is
placed into Hand mode (by setting the ProgHandReq parameter), it indicates
that the hand/auto station has bypassed the control system and is controlling the
final control element directly. By setting the CV equal to the HandFB value (the
output of the hand/auto station), the loop can bumplessly return to Auto or
Manual mode once out of Hand mode.

Perform Common Process Loop Control Algorithms

Mode changes are initiated by setting the appropriate mode request
parameters of the PIDE instruction. These mode request parameters
are prefixed by either “Prog” to indicate it is a programmatic request or
by “Oper” to indicate it is an operator generated request. For example,
OperAutoReq is a request from the operator to enter Auto mode.

The Program/Operator control states can be used to lock the PIDE
instruction into the appropriate control state when needed. For
example, an automated startup sequence might be used in an
application where the user program needs to lock the PIDE instruction
into Program control to ensure that the operator does not interfere
with the startup. This can be done by setting the ProgProgReq
parameter (programmatic request to go to the Program control state).

PIDE_04

FIDE
“ ” o
® When “ProgramLock” is
oo
. o Py cvELR
true, the loop is locked
.] sPCascads PuHHA am [
into Program control
since ProgProgReq is i
g g q oFF P L arm [
] HandrFE PYROCPosAlamm
trU e. — & FrogProgReq PUROCNegAlam -
PIDE 04 =] ProgOperReq CrewHHAlarm EIE
PID_E] ProgCasRatReq DewHlam
. .] ProgautoReq DevLalam [
[Loop IS |0Cked I nto Enhanced PID oo [FreghanualReq DevLLAlarm 3?
Operator control E ::p WE: 2”” i :wzsve::e:eq mcgi:ED
t t - -
. p . O SPCascade FWHHAlarm EIE Auto 3?
since ProgOperReq, IS
O CWPrag PWLAlarm 30 Cwerride 30
true OFF F’VLLAIarmBD Hand [5
) d Hanare PVROCPosalam [AutotuneT ag PIDE 01 Atune
4 rogProgReq PWROCHegAlarm EIE
I — =] RrogOperReq CewHHAlarm 30
] FrogCasRatReq DewHalarm 30 Progoper |ndlcates
i M N the current control
] FroghtanualReq DevlLélarm [=
| ProgOwerideReq Progop(state Of the IOOp.
M PraaHandRan M acRat o

Perform Common Process Loop Control Algorithms

The control states and modes also have precedences. If both
Program and Operator control are requested, the loop will go to
Operator control. The precedence for modes are (lowest to highest):
Cascade/Ratio, Auto, Manual, Override, and Hand.

Finally, the Operator requests are designed to simplify working with
operator interfaces. Any time an “Oper..." request is set, the PIDE
instruction evaluates whether it can respond to the request, and then
always resets the request. This eliminates the need for special
programming in the HMI to reset mode requests.

Timing Modes Regulatory control instructions require a known update time (the At in
the PIDE equation, for example) in order to execute correctly. In
Logix, instructions such as Enhanced PID, Totalizer, and Lead-Lag
support three different timing modes to obtain this update time:
Periodic, Oversample, and Real Time Sampling. These modes are
described below:

Mode Description

Periodic The default timing mode. To use this mode, simply place the instruction in a routine running in a
periodic task. The instruction will automatically use the periodic task update rate as the update
time. This mode is the easiest to implement and can be used for most applications.

Oversample This timing mode provides complete manual control over how the instruction executes. To use
this mode, configure the update rate in OversampleDT. You must then set Enableln every
OversampleDT seconds.

Real Time This timing mode works with analog input modules to execute the instruction algorithm whenever

Sampling a new analog input sample is received. To use this mode, wire the RollingTimeStamp parameter

from the analog input module into the RTSTimeStamp parameter on the instruction, and wire the
RealTimeSample parameter from the analog input module into the RTSTime parameter on the
instruction. This mode is useful if you want the most accurate execution on instructions such as
Totalizer where small errors could accumulate over time.

Perform Common Process Loop Control Algorithms

An example of using Periodic mode is shown in the figure below.
Periodic mode can be used for the vast majority of your loops. Just
make sure that the PV is sampled faster than the periodic task update
rate.

Periodic mode is intended to be Since the timing mode is Periodic
used by placing the block into a (TimingMode=0), DeltaT is automatically
periodic task.

set to the task update time of 0.1 seconds.

FIDE_ A1 Properties - PIDE_01
Controller Tags FIDE
Contraller Fault Handler scaded
3 Power-Up Handler Enhanced FID
EIB Tasks . dev el Timing
E% MainT ask Made: j
- A8 MainProgram § 5PProg sk) hd
. = O SPCascade FYHHAl arm
i rogram Tags
L3R LDopEDntra‘ o RatioProg Py HALam
D[T:‘ nscheduled Programs d cvProg FvLALs i B
""" —_ N o FF P LAl arm [z
] HandFB FYROCPosAlarm [©
i‘:\ Task Prope ‘ties - MainTask =] ProgFrogReqg PWROCHegAlarm [
] FrogDperReg DewHHAlarm [=
General Configlation l Program / Phase Schedule] Monitor] | ProgCasRatReq DewHAlam [z General Configuration] EUsJLimits] Cascade/R4
. =] ProgAutoReq DewlAlarm [©
Type: Periodi =
1 enodie j =] ProghanualReq CewllLAlarm [T o Vis |Eametd |Va|ue D|;yDF
e 100.000 s =] ProgOverideReq Froglper [z I g H::!I < B0
Priority: n 3: {Lower Mumber ields Higher Priarity & FroatandRea CasRatfs 0| DeltaT "1 |RE,
Aute £ O] [~ AtuneReady 0/B0
‘watchdog: 500.000 ms Manual & Y B R nion
[Disable Automatic Dutput Processing To Reduce Task Overhead Cweride [£
[Inkibit Task Hand [z
AutotuneTag FIDE_01Atune

For an example of where you might use Oversampling mode,
consider an eddy current furnace where every 28 seconds, a new
steel ingot is dropped on a conveyor and pushed forward into the
furnace. An infrared camera takes a temperature reading on the ingot
which is pushed out the end of the furnace. The infrared camera
provides the PV (temperature) for this loop through a serial interface
to the controller. In this case, a new PV is obtained about every 28
seconds, but due to the asynchronous nature of the serial port
communications, there is no good way to synchronize this with a
periodic task. You could use Oversampling mode to drive execution of
the PIDE instruction every time a new temperature signal was
received as shown below.

Perform Common Process Loop Control Algorithms

Prope

Turn on VISIbIIIty for Enableln pln General Ennfiguratinn] ELIs.e’Limitsl Eascade.-"ﬁatin] Alar

and wire to the boolean signal Tl R I
indicating “new temperature [|Enbiein 1 B0
(R i = 1 nn RF:

received” from IR camera.

Select Oversampling mode
(TimingMode=1).

Fumace Control

FIDE

PIDE Properties - FurnaceControl

Enhanced PIT

MewTem pRe caive d I+ —1 Enableln CWEL
on
Ing ot Te mperature L+ P
oo
NewlngotRate \ OwersampleDT

weTag Furnace Controlftune

Genersl Canfiguration | ELs/Linits | Cascade/F
Timing
Mode ,Wl
Oversample At ,—]

RTS Period: ms

Crnbrnl artine: 4 F-cP.mu

Turn on visibility for
OversampleDT pin and wire
to setting for the “new ingot

General Conliguration] EUs.-"Limits] Cascadef’Halio] Al

rate.” (Optionally, you could o e s
just enter a constant value.) Mg o LD [

For an example of using Real Time Sampling mode, consider the
case of a flow totalizer. In this case, a volumetric flow signal is totaled
over time using a Totalizer instruction. Because the Totalizer
continually adds the most recent flow sample to the running total, any
small inaccuracies can build up over time. To obtain the most
accurate time based samples from the analog input module, you could
use Real Time Sampling mode as shown below. (Note that the
Totalizer instruction internally uses double precision floating point and
trapezoidal rule numerical integration to minimize any calculation
errors.)

Perform Common Process Loop Control Algorithms

+-Lyp Prederined aihili i
+- L Module-Defined B Module Properties: Local:1 {175 Turn on VISIbIIIty Of RTSTime
=15 1j0 Configuration — and RTSTimeStamp.
-3 1756 Backplane, 1756-A7 General] Eonnection] Module Info | Cant
ff0 [0] 1756-L55 test T
f] [1]1756-TFel I_D 1lalalals OT Propertie OT_D
arameters"l Tag]
Scaling
High Signal: High Engineeri |Vis |Name |Value Tyr
10.0 W = [1o0 [~ | Timingtode 0/ DIk
< » OversampleD T 0.0/ RE,
= Low Signal: Low Engineeri ||\ RTSTime 1 DIk
pocteleinediizos 0.0 v = [100 | [F]RTSTimeStamp 0/Dir
De=zcription fl ™ [Fwraklafo nien
Status Offline H H
R Wire the RealTimeSample value from
RTS 100 g ms

the analog input module configuration
to the RTSTime parameter.

TOT_04

Configure the analog
input module for your

desired RTS rate. oo .
Wire the RollingTimeStamp input from the [coctizrovss_p [D.d::.lzzﬁ
analog input module to the RTSTimeStamp & ProgOperieq ProaOperfa
parameter. The totalization algorithm will g ProgStarifeq Runstop |
now execute every time it sees the time 5 S it
Stamp Change_ \ Localit:C RealTimeSample o0 RTSTime TargetDeviFlag 32

Local:A:L.RollingTi { RTST TargethewzFlag [0

PV and CV Fault
Handling

When a process variable or control variable has bad health, you don’t
want the PID loop continuing to try to control since it no longer has
either a feedback or an actual control capability. The PIDE instruction
can handle this automatically if you use 1756 I/0 modules. The 1756
I/0 modules all have channel fault indications for each channel. The
channel fault will turn on if communications are lost with the 1/0
module or if faults such as underrange or overrange occur on the
channel. The channel fault, therefore, is an easy single parameter to
monitor the quality of the 1/0 channel. By wiring these channel fault
indicators into the PVFault and CVFault parameters, the PIDE
instruction will automatically lock itself into Manual mode any time the
PV or CV has bad health.

Perform Common Process Loop Control Algorithms

To automatically handle PV or CV faults, first turn on
visibility of the PVFault and CVFault pins.

PIDE Properties - PIlc_01 PIDE Properties - PIDE_01

) . General Configurg n] EUsJLimits] EascadeJHatio] Ala Gerferal Eonfiguration] Est’Limits] Eascadex’Hatio] Ala
Then just wire the analog
input and analog output

Wiz 3 |Value |Typ is |Name |Value |Ty|:

I 0.0 RE | Fi atiolLimit 1.0/RE:

channel fault bits to the A 080 | [T} CFau 0/80)
I

; o TR innnles T PulitFan
PVFault and CVFault pins. PIDE_O1 _/ﬂ—m

FIDE
=25 Tf0 Configuration Enhanced FID
=8 &;56 Backplane, 1756-A7 Lo cal::| ChOData oo Py CVEU
ﬂ E?} i;:::ll_:ssltes'z LocalA:l.ChOF ault 0 — [PWFault =13 jED
7 essorea Joreme ol When PVFaultor
| RatieProg P Lalarm 30 CVFault |S true, the
[Learzicmraut o —fovrat riamia’ |oop locks into Manual
Channel fault indicators go true 9 o mode. This prevents
if the channel fails (goes o HandrB bevtaiam o the CV from winding
underrange or overrange, etc.) o ProgPro gRea DaLialam o up out of control.
. . . . = FrogdperReq FrogQper[5)
or if communications with the gt i et
module fails.] Pra ghutoReq putof
E| ProghanualReq tanual EID
=] Proglweride Req Owerride IID
g FrogHandReq Hand 30
AutotuneTag FIDE_D1Afne
Ratio Control Ratio control is useful when you are trying to maintain a constant ratio

of flow of one material in relationship to another. For example,
assume that a continuous mixing tank receives an ingredient flow
(Flow A) from an upstream source. The quantity of Flow A may vary
depending on upstream processing conditions. For this reason, Flow
A'is often referred to as the “wild” or “uncontrolled” flow. Regardless of
the amount of Flow A into the mixer, you always want to add a
constant percentage, or ratio, of another ingredient (Flow B). Flow B is
controlled by a PIDE instruction using Cascade/Ratio mode, where
the setpoint to the PIDE instruction is determined by multiplying the
Flow A signal by a ratio value.

Perform Common Process Loop Control Algorithms

To enable Cascade/Ratio mode, you must first set parameter
AllowCasRat. This parameter is available since most loops do not
need Cascade/Ratio mode, so it is disabled by default. You must also
set the UseRatio parameter. This tells the PIDE instruction to multiply
the SPCascade input by the Ratio value and use the result as the
setpoint when in Cascade/Ratio mode. You then wire the controlled
flow into the PV input and the uncontrolled flow into the SPCascade
input. You can also define ratio high and low limit values to limit the
ratio to valid values. An example of this implementation is shown
below.

: Uncontrolled
flow from
Flow B I Flow A | upstream

Controlled flow process
controlled by PIDE
instruction

Perform Common Process Loop Control Algorithms

Sot AlowCasRat o

a”OW Cascade/Ratl& General Configuration | EUs/Limits Cascade/Ratio l Ale

mode. ¥ Alow Cascade/Ratio mode

. j Use Ratio

Set UseRatio to tell the loop] * p e [70
to multiply SPCascade by

. atio LLimnit: 05
the Ratio valug’ sl
...Program.RatioController
Use the controlled flow as the PV. RatioAimits can be E
Wire the uncontrolled flow into the used to bound the T o e | oporator
SPCascade parameter. acceptable ratio £ Ratio
RatioController Values' E_
o = B 50.00
Enhanced PID ;7 l:l
SPPro SFQ
2 e oAk Ratio values can L I v .
T I v o come from an ;
dre PuLLalam 3 operator display
HandFB PWROCPosAlarm [=
l-E FroaProaRea PWROCHeaAlarm :D Or the program'
Cascade Control Cascade control is useful when you want to limit fluctuations in your

final control element from causing upsets to your process. As an
example, consider the case of a mixing tank whose temperature is
controlled by the flow of steam into a heating jacket around the tank. If
the steam pressure were to drop as the result of some upstream
activity, the temperature of the product in the tank would start to
decrease. The PID loop controlling the temperature would sense the
temperature drop and eventually open the steam valve enough to
bring the temperature back to setpoint. However, it would be
advantageous to start opening up the steam valve before the product
temperature was seriously affected. Cascade control provides this
capability.

In cascade control, the loop controlling the main variable is referred to
as the primary loop. This is also sometimes referred to as the master
loop or outer loop. In our example, the tank temperature is controlled
by the primary loop. The loop controlling fluctuations in the final
control element is referred to as the secondary loop. The terms ‘slave
loop’ or ‘inner loop’ are also used. In our example, you could set up a
secondary loop to monitor the jacket temperature. Since the volume of
the jacket is much smaller than the volume of the tank, it will respond
much more quickly to changes in steam pressure. This illustrates one
of the limitations of cascade control. The process response

Perform Common Process Loop Control Algorithms

characteristics of the secondary loop must be quicker than the
process response characteristics of the primary loop. This is logical
since if the secondary loop was slower, it would not be able to control
disturbances before they were seen by the primary.

With a secondary loop monitoring the jacket temperature, a drop in
steam pressure will now be quickly seen as a drop in the jacket
temperature, and the secondary loop will start opening the steam
valve before the tank temperature is seriously affected. This is
illustrated in the diagram below.

® With cascade control, a drop in steam pressure
causes the jacket temp to drop. The secondary
(inner) PID loop then responds to increased steam
flow and gets the jacket temp back to setpoint
before the product temp is seriously affected.

o Moo

. \
Primary loop _PID L

Secondary loop

Steam
@
S8
Eg e

Time

The PIDE instruction has built-in capabilities to handle cascaded

Perform Common Process Loop Control Algorithms

loops. First, it has a distinct mode (Cascade/Ratio) to handle cascade
control. The secondary loop can either be in Cascade mode, in which
case the output of the primary will provide the setpoint of the
secondary, or it can be in Auto mode, in which case you can enter a
temperature setpoint for the jacket directly.

The PIDE instruction also supports initialization of the primary loop to
the secondary loop’s setpoint. If the secondary loop leaves Cascade
mode, the primary loop needs to stop trying to control since it no
longer is affecting the process. It should also set its output equal to
the secondary loop’s setpoint, so when the secondary is returned to
Cascade mode, the primary will bumplessly start controlling.
Additionally, the PIDE instruction supports windup limiting on the
primary loop. When the secondary loop reaches an output or setpoint
limit, you want the primary loop to stop integrating in the direction of
the limit. For example, if the secondary reached a high output limit,
the primary should no longer integrate in a positive direction. In our
example, if the secondary loop had opened the steam valve 100%, it
would make no sense for the primary to continue to ask for more
steam (increase the secondary’s setpoint) since the secondary cannot
give any more steam.

A typical setup of a cascaded loop in RSLogix 5000 is illustrated
below. First on the primary loop, you need to turn on visibility of the
CVInitReq and CVInitValue pins. These will be used to setup the
initialization of the primary loop when the secondary leaves Cascade
mode. You should also make sure that the engineering units range of
the primary’s output matches the engineering units range of the
secondary’s setpoint since the secondary will use the primary’s output
as its setpoint.

Perform Common Process Loop Control Algorithms

Make sure CVEUMax and CVEUMin
match the engineering unit range of the
secondary loop’s SP.

PIDE Properties - Primaryl.oop

Turn on visibility of CVInitReq
and CVInitValue pins.

General Configuration EUs/Limits l Eascade.-"F!atio] Alarms] Parameters | Tag

PIDE Pro perties - Primaryloop

Engineering Units Scaling

P Cv:

Max at 100% span: 100.0 Max at 100% output:
0.a

General onfiguration] EUs.-"Limits] Eascade.-"F!atio] Alar

o

Mirn at 0% span: Min at 0% output:

T it
e T
FIDE . |
| FIDE Enhanced PID |:|
. | Enhanced PIE o oy - E: o Seamvae |
T S CvEUpT o sprasase s bt
| [SFCazcade SF 32'0 InitPrim ary 3—21
Ly CWinitReq FrogQOper [0 i ndup HOut [T
—%] CVinitvalue CasRat 30 Wi ndup LOut B'D|—|
] WindupHin Auto IlD FrogQOper EID| |
|-|—!a€\.l1|1ndupLIn tdanual IID CasRat :IE| |
| AutotuneTag Frimary Tune Auto 30| |
| Manual &
| : AutotuneTag SecondanTune : |

On the secondary loop, you need to turn on visibility of the InitPrimary,
WindupHOut, and WindupLOut pins. These will be used to setup
initialization and windup limiting on the primary. You also need to set
AllowCasRat to enable the Cascade/Ratio mode just as we did for a
ratio control loop.

Perform Common Process Loop Control Algorithms

Set AllowCasRat true to enable

Turn on visibility of
Cascade/Ratio mode.

InitPrimary, WindupHOut, and
WindupLOut pins.

PIDE Properties - Secondaryl.oop

Geferal Eonfiguration] EUs/Limits Cascade/Ratio | A

PIDE Properties - Secondaryloop

General Corfiguration | EUs/Limits | Cascade/Ratia| Alar Allovs Caseade/R atio mode

g |Name |Value |T_|,J|:I [UseRatio
Iananar_l,l 0 BOC R atio HLimit: 1.0
0| @ ‘WindupHOut 0 BOL
g [+ WinduplLOut 0 Bat . . 1.0
nl = [Ratin nnlRF: it Ll i
—_—_——— — == Dﬂ____oEryEp___ /
| acketTemp _
PrimansLoop FIDE |
| FIDE Enhanced PID |:I
ol
| Enhanzed FID Py CVED :—b_ 0 SteamValve
0.0 0.0 [x}
Froduct Temp] P CWEU [——————————] SPCascade 5P O0—
oo o
| ospPrascade sPh InitPrim ary £ |
u} u}
L] CWInitReq FrogQper [0 Mindup HOWt [|
o o
0 CWlnitvalue CasRat [0 i ndup LOut [+ ——
u} u}
] WindupHin Auto IID FrogQOper IID| |
-I—HE indupllin Manual O CaszRat @& | |
o
| | AutotuneTag Frimans Tune Aute [0 | |
a
| Manual [|
| | AutotuneTag Second anyTune | |

Finally, you should wire the InitPrimary and SP outputs of the

secondary to the CVInitReq and CVInitValue inputs on the primary.
When the secondary leaves Cascade mode, it will set the InitPrimary
output, causing the primary loop to initialize its CVEU output to be
equal to the secondary’s setpoint. You should also wire the
WindupHOut and WindupLOut outputs of the secondary to the
WindupHIn and WindupLIn inputs on the primary. When the
secondary hits an output or setpoint limit, it will set the appropriate
Windup output which will cause the primary loop to stop integrating in
that direction.

Perform Common Process Loop Control Algorithms

Wire SP to CVInitValue to initialize the primary’'s CVEU to the
secondary’s SP value whenever CVInitReq is true. This allows
the primary to bumplessly line up with the secondary.

____________ D0 " Secomdaloop |
| prims
PrimanyLoop FIDE |
| FIDE Enhanced PIL L
| Enhanced PID Py CWEL 0. .
oo oo Q)
[Froguatems oot b ey) S . nia)
|] SPCascade SF 30'0 InitPrim any 3-0
L] CVInitReq ProgOper 32 Mindup HOwt j—E|
%] CVinitvalue CasRat 30 Wiindup LOut 30—|
] WindupHin Auto IlD FrogQOper 30| |
= Windupll] I £ CazRat £ H H H
i e ==, | “Wire InitPrimary to
| AutotuneTag Frimary Tune Auto 30| | R
| | vanus 2 CVInitReq to
| | AutotuneTag SecondayTune | | initialize the primary

______________ ‘I whenever the

secondary leaves

Wire WindupHOut and WindupLOut to CasRat mode.

WindupHIn and WindupLIn. This stops the
primary from integrating up or down if the
secondary hits an output or setpoint limit.

One final note -- some DCS systems accomplish the primary
initialization and windup limiting by wiring a single “back-calculate”
wire from the secondary to the primary. This wire contains all of the
initialization and windup H/L signals. However, the advantage of
breaking these out as separate signals is that it allows additional
flexibility for handling more advanced situations where, for example, a
single primary loop might fan out to multiple secondaries.

Split-Range Time-
Proportioned Loops

In certain situations, a single PIDE instruction might be used to
perform two types of control depending on the output range. If we
return to the example of an extrusion machine barrel zone, the
temperature is controlled by pulsing resistive heaters when the PIDE
output is above 50% and pulsing coolant through cooling coils when
the PIDE output is below 50%. The Logix controllers support a Split-
Range Time-Proportioning (SRTP) instruction for precisely these
types of loops.

You also need to consider how you execute the PIDE and SRTP
instructions. These types of temperature loops are usually very slow
acting, so the PIDE instruction often needs to execute only every one-
half to two seconds. It is important, however, that the SRTP
instruction is executed much more quickly than the PIDE instruction.
Since the SRTP is actually performing the pulsing of the heating and

Perform Common Process Loop Control Algorithms

cooling outputs, your output resolution is a function of the CycleTime
of the SRTP and how often the SRTP executes.

For example, if you defined a CycleTime for the SRTP of 10 seconds,
and then executed the SRTP in the same periodic task as the PIDE at
once a second, your output resolution would actually only be 10%! It
would be impossible to control your loops with this resolution.
Therefore, what you want to do is execute the SRTP instruction in a
faster, higher priority periodic task typically running every 10 or 20
milliseconds. You can then use a controller scoped tag to send the
data from the PIDE output to the input of the SRTP.

For a typical loop then, your CycleTime might be 10 seconds, and if
your SRTP instruction is running in a 20 millisecond periodic task,
then your output resolution is 0.2% which is plenty of resolution to
handle most of these types of loops. For heat/cool loops, you typically
configure the SRTP instruction such that 100% PIDE output provides
full heating, 50% PIDE output provides no heating or cooling, and 0%
PIDE output provides full cooling. In fact, this is the default SRTP
configuration. For a heat-only loop, configure the SRTP such that
100% PIDE output provides full heating, and 0% PIDE output provides
no heating. Additionally, for a heat/cool loop, you will typically want to
set the .CVInitValue parameter of the PIDE instruction to 50. This will
cause the PIDE loop to start up with an output of 50% when the
controller first goes to run mode. A typical heat/cool loop setup of the
SRTP instruction is shown below.

Cycle Time = 10 seconds

SRTP SRTP

Heat Cool
PIDE SRTP % SRTP % Contact Contact
CVEU Heating Cooling On Time On Time

0% 0% 100% 0 sec 10 sec
25% 0% 50% 0 sec 5 sec
50% 0% 0% 0 sec 0 sec
75% 50% 0% 5 sec 0 sec

100% 100% 0% 10 sec 0 sec

Perform Common Process Loop Control Algorithms

The FBD logic to execute a typical heat/cool loop would then look like

this:
. . +-[7 Controller BarrelTemp
Execute the PIDE instructions B Tasks Execute the SRTP
in a slow periodic task since 7 %?E;f';d;fnf:;;f;m instructions in a faster,
these are typically slow Progran Tags higher priority task. This
temperature loops. - @E;mdicsmm g\ allows the pulsed outputs to
= TemplLoops
mmtas \ D€ MOre accurate.
e TR
BarmelTempLoop A/ SRTF_01

FIDE SRTP
Enhanced PID Split Range Time Proportional
oo oo oo u}
Barre|Te mp [t P CWEL 30—C< LOOPPUtPUil |Loop‘Dutput >D—C In He atOut :)U— — Resistive Heater
FrogOper EID CoolOut [— —& CoolingSolenoid
oo
Aot [0 He atTim ePercent [
o oo
hanual [0 CoalTimePereent [

AutotunaTag BarralTempAtune

Use a controller
scoped tag to send
the PIDE CVEU to
the input of the SRTP

If you are driving an analog final control element for heating and/or
cooling instead of a digital contact, you can directly use the
HeatTimePercent and CoolTimePercent outputs of the SRTP
instruction. They will range from 0-100% depending on the amount of
heating or cooling requested by the PIDE instruction.

As mentioned earlier in this document, adaptive gains can easily be
accomplished with the PIDE instruction. Often, having different gains
for the heating and cooling processes can lead to better control since
these are different physical processes. To accomplish adaptive gains,
turn on visibility of the PGain, IGain, and DGain parameters and wire
in a selection of either a set of heating gains or cooling gains as
shown below.

Turn on visibility of PGain, IGain,
and DGain pins. This allows the

Perform Common Process Loop Control Algorithms

tuning constants to be

PIDE Properties - BarrelTemploop

General Configuration] EUS;"Limitsl Cascadefﬁaliol Alan

_ Wiz |Name |\~"a|ue |T5.|p|
programmatically changed. WV PGan 0.0 |REF
1| ¥ |IGain 0.0/RE#
|| ¥ |DGain 0.0/RE#
I'l = PuUEPrannr timkal nirne
|l — BarrelTe mploop
— GRT_01 ~—_ PIDE
/ GRT I Enhanced FID
/ > 0o a0
[Greater Than (A= E) W«: Py CVEU —#—T LoopOutput
lu] a
\ ——] Soumes Dest [F— Fi3ain FrogQper[s
a0 | SEL_M a
Sounced O I&ain Auto @
| SEL o
\ O DG ain Manual @
| Select \\ AutotuneTag BarrelTempAtune
) 0.0
CoolPGain In1 Out [—
1 n] /
- He atP Gain Inz
h ~~ — Selecterin
S~ e A

.
Tiepeat this selection

so, select the heating gain; if not,
select the cooling gain.

For simple simulation of process loops, you can use the process
instructions built right into the Logix controller. Most loops can
generally be thought of as either “integrating” or “self-limiting.” An
example of an integrating process would be a level loop. If you
consider a tank with a flow into the tank matched exactly by the flow
out of the tank, it will have a steady level. If you then make a step
increase in the flow into the tank, the tank will steadily fill up until it is
full or overflows. This is typical of an integrating process loop; if you
make a step change to the loop output, the process will steadily
increase or decrease until it reaches a physical limit.

Process Simulation

Level

Temperature

Perform Common Process Loop Control Algorithms

CV (inlet
flow), Tank

overflows!
PV

Time
An integrating loop such as a level loop is simple to simulate — just
perform a mass or material balance calculation on the tank.

An example of a self-limiting process loop would be a temperature
loop. If you make a step increase to the loop output, the temperature
might typically take a little while to start responding, and would then
exponentially increase to a new steady-state value.

CV (steam flow)

I

PV

Time

A self-limiting process loop can often be simulated by a deadtime and
first order lag in series. The deadtime simulates the delay between
when the output changes and the PV starts responding, and the lag
simulates the exponential rise to a new steady-state value.

Temperature

Temperature

Perform Common Process Loop Control Algorithms

CV (steam flow)

I

PV

CV (steam flow)

,< PV
First-order lag

0‘ defines curve

Deadtime

Temperature

Time
Real Process

CV (steam flow)

PV

First-order lag
defines curv
Deadtime

Parametersl Tag]

Time
Simulated Process

The Logix controller provides Deadtime and Lead-Lag instructions
which can be used for these types of simulations. The output of the
PIDE instruction is wired through the Deadtime and Lead-Lag and
then back into the PV input of the PIDE. The loop can then be tuned
and operated with the model.

VEUTHry=slas - VBT Ul Wiring the CVEU of the PIDE

block through a Deadtime

and Lead-Lag block

is |Name Walue |T_l,l)
[|Deadtime zore Simulates a process.
T (Rain 10IRE

LEDT_01 PIDE D1
CEDT FIDE
H Deadiime Enhanced PIL
Time 00 0o
In out F— —— CVEL
. oo
Slmulated Process Storageduray DEDT_01Amray O SFFrog SP :lD
O] 5F Cascade FYHHAlLarm EID
O RatioProg FYHAam [
u}
O CWPrag FuLalarm [
Lo LG 04 il
O FF PWLLA arm [0
LD LG u}
O HandFB FWROCFosAlam [0
Lead-Lag o
oo E] ProgProgReq FWROC Megalarm EID
LDLG Properhes . LDLG_(" In Outp—H =] ProglperReq CevHHAlarm &
u}
= FrogCasRatR CrevHAL 0
Parameters] Tem] [z ProgCazRatR eq evHAlam jD
5 FroghutoReq CewlAlarm [0
u}
Wiz |Name Walue Ty 5 ProghanualReq DewlLalarm EID
T |Lead 0.0 RE & ProgOveride Req ProgDperElD
_l r Lag 5.0(RE =] ProgHandReq CazRat[&
| i . a
- G.aln 1.0/RE auto |5
|| [~ |Bias 0.0/RE]
Tl = T leaoas Al hlanual 30
Owerride [0
u}
Hand @
AutotuneTag FIDE_D1Alne

Perform Common Process Loop Control Algorithms

Autotuning

By choosing different values of deadtime and lag, you can simulate
different types of process loops. For example, a slow temperature
loop might have a deadtime of a few minutes and a lag time constant
of several minutes, while a fast flow loop might have a deadtime of a
couple seconds and a lag time constant of a few seconds.

You can also use the Gain parameter on the Deadtime or Lead-Lag
instruction to simulate a process gain. For example, if a 10% change
in loop output would typically cause a 20% change in PV, you could
use a Gain of 2 to simulate this behavior. Similarly, if your loop has
an ambient condition whereby a loop output of 0% would cause the
process to settle at some non-zero value, you can enter this value as
a Bias. For example, a temperature loop might settle at room
temperature if the loop output was 0%. Finally, you might sometimes
also want to use a Scale (SCL) block to scale the output of the PIDE
instruction into a PV value with a different range.

The PIDE instruction has a built-in autotuner which you can use to
obtain suggested tuning constants for your process loop. Because the
autotuner is built into the PIDE instruction, you can tune your loops
within RSLogix 5000 or from any operator interface. The PIDE
autotuner is an open loop autotuner, meaning that the loop must be in
manual. The autotuner will step the output by an amount you
configure, watch the response of the PV, and then give you sets of
suggested proportional, integral, and derivative gain values for a fast,
medium, or slow response. As shown below, in addition to the
suggested tuning constants, the autotuner also returns the process
model which was used to estimate the tuning constants. By
comparing this process model to the actual process, you can get an
idea of the appropriateness of the suggested gains.

Tuning constants suggested by
the autotuner

Perform Common Process Loop Control Algorithms

PIDE Autotune - Flowl oop E|
Ewecution State: Complete
Autotune Statuz [Qp
Froportional Integral [1/min]
£ Slow Response | 058575314 | 5990657 | 7.48462370=-003
" Medium Response | 11715063 | 11.93134 | 0014959247
{" Fast Response | 17572594 | 17.97197 | 0.022453869
| oo | oo |
Time Consztant: 8.1 zec
D eadtime: 2.3 zec
Gain: 1.050587 Process model used by
azed on Mon-integrating model the autotuner
. | — |

If more autotuning capability is desired, the PIDE instruction also
supports the RSTune and RSLoopOptimizer packages. These PC-
based autotuners support closed loop tuning and also, particularly in
the case of RSLoopOptimizer, provide a wealth of diagnostic
information regarding your process loops.

Summary For more reference information on the Enhanced PID instruction and
the rest of the process control instruction set, you can refer to the
Logix5000 Controllers Process Control and Drives Instructions
Reference Manual, publication 1756-RM006. This manual gives a
detailed description of the operation of each of the built-in process
instructions.

—~ QO T — o CcC U

Perform Common Process Loop Control Algorithms

The Enhanced PID instruction goes beyond the traditional realm of
PLC-based loop control by providing a host of advanced features,
allowing you to easily set up more advanced loop algorithms without
the onerous ladder programming required by traditional systems in the
past. However, the PIDE instruction is only one piece of a Logix-
based process solution. Other features such as the entire process
control instruction set, full-featured Function Block Diagramming,
Sequential Function Chart, and Structured Text editors, ControlLogix
redundancy, a huge selection of 1/O options, including HART and
FOUNDATION Fieldbus, and integration with our RSView operator
interface solutions, allow the Logix controllers to provide a solution as
adept at performing process control as they are at sequential, motion,
or drives control. This provides the opportunity to drastically decrease
your engineering and maintenance costs by leveraging a common,
scaleable platform across your entire facility. Whether you are
controlling continuous or batch process applications, high-speed
packaging machines, or coordinated drive systems, Logix now has the
capabilities to handle all these applications.

www.rockwellautomation.com

Corporate Headquarters
Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212.5201

Headquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

Europe/Middle East/Africa: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: (1) 864.281.2433
Europe/Middle East/Africa: Rockwell Automation, BrithlstraBBe 22, D-74834 Elztal-Dallau, Germany, Tel: (49) 6261 9410, Fax: (49) 6261 17741
Asia Pacific: Rockwell Automation, 55 Newton Road, #11-01/02 Revenue House, Singapore 307987, Tel: (65) 6356-9077, Fax: (65) 6356-9011

ion LOGIX-WPO08A-EN-P — August 2005

Copyright 2005 Rockwell Automation, Inc. All Right Reserved. Printed in USA.

